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Abstract

An orthotropic constitutive model for porous, ductile media is developed, which is centred on the micromechanical
analysis of a cylindrical representative volume element (RVE) with elliptic cross-section containing a coaxial and
confocal elliptic-cylindrical cavity. The constitutive model is obtained in the case of a rigid ideally plastic behaviour of
the matrix material, whose yield condition obeys J, flow theory of plasticity with an associated flow rule. The following
condition is assumed throughout: the longitudinal axis of the hollow cylindrical RVE is a principal direction of the
macroscopic strain rate and stress tensors. Cases for which the principal directions of the macroscopic strain rate tensor
in the RVE cross-section plane are aligned or rotated with respect to the ellipse axes are both considered. The con-
stitutive behaviour is characterized by the homogenized yield domain in the macroscopic stress tensor space, by as-
sociated flow rules for the plastic components of the macroscopic strain rate tensor and by the evolution laws for the
internal state variables. These are the void volume fraction, already appearing in Gurson’s model, the aspect ratio of the
cavity and its orientation in the RVE cross-section plane, assuming that during the deformation process, the void
retains an elliptic shape. The theoretical results are compared with finite element computations of the RVE strength at
plastic collapse to assess the capability of the model to describe the actual micromechanical response to the applied
boundary conditions. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

During the last two decades, the micromechanical description of ductile crack growth has received much
attention. Starting from the pioneering works of McClintock (1968) and Rice and Tracey (1969) on isolated
cylindrical and spherical voids in viscous and plastic materials, respectively, with strain-hardening prop-
erties and rigid perfectly plastic media, models for the description of the damage process leading to ductile
fracture have been developed in order to take into account its actual micromechanical features.

Gurson’s constitutive model (Gurson, 1977), which phenomenologically describes at the macroscale the
degradation of the material strength properties due to the microscopic void growth to coalescence, has set
the bases for numerical simulations of crack growth processes in ductile media (Xia et al., 1995).
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Alternative descriptions of ductile fracture processes have been developed, within the framework of
continuum damage mechanics, e.g. by Lemaitre (1992) and Rousselier (1981). This latter approach does not
constitute a reference for the study presented in this paper, where attention is focused on the homogenized
properties of a single representative volume element (RVE) that locally describes in an average (or smeared)
fashion the actual distribution of microvoids within the matrix material.

From an experimental viewpoint, results have shown that ductile fracture is triggered by the presence of
inclusions within the plastic matrix material (Goods and Brown, 1979; Speich and Spitzig, 1982). These
inclusions, or second-phase particles, are usually characterized by elastic and strength properties different
from those of the matrix material. The decohesion at the particle-matrix interface and the particle rupture
are the micromechanical phenomena of crack initiation.

The subsequent macroscopic crack growth is governed by the process of void growth to coalescence, and
is strongly influenced by the spatial distribution of the inclusions within the matrix. During the first stage of
the microvoids growth, the largest inclusions, according to some sort of weakest-link process, play the main
role. In the subsequent phase, microvoids can be nucleated at the interface between matrix and smaller
inclusions giving rise to phenomena governed by failure mechanisms at different size scales (Faleskog and
Shih, 1997). The phenomenological description of the material behaviour at a length scale comparable to
those of the specimen geometry and of the variation of the applied loading conditions thus needs to take
into account the microstructure of the solid.

Porous, ductile media can be studied at the micromechanical level as two-phase composites, the first
phase being the rigid ideally plastic metal matrix and the second one, the cavity (with vanishing strength
properties) which is surrounded by the matrix. In order to obtain the overall (or effective, homogenized)
constitutive behaviour of the porous, ductile solid, that is of a void-containing metal matrix, homogeni-
zation techniques are required. These techniques must be able to handle the nonlinear response of the
matrix material and the spatial arrangement of the voids.

Gurson’s model, which is a micromechanics-based constitutive description of the material behaviour in
the fracture process zone during ductile tearing processes, has been obtained from the study of a cavity
contained in a finite-dimensions RVE. This model, which describes the void growth process, is not able to
follow the material response during the final coalescence process that drastically reduces the local load-
carrying capacity. Various modifications to the original yield condition and evolution law for the void
volume fraction (or porosity) have been proposed in order to improve the agreement between experimental
and numerical results obtained through this model for strain localization and subsequent fracture processes
(Tvergaard, 1990).

Recently, the effects of anisotropic microstructures on the effective behaviour of two-phase composites
have been studied. Since during finite-deformation loading processes the microstructural geometry can be
largely distorted by plastic strains, account has to be taken of this aspect to accurately describe the actual
response of porous media under general loading conditions.

Under axisymmetric loadings, effective properties of metals containing particulate spheroidal voids or
inclusions have been obtained by Mear and coworkers for an ideally plastic matrix behaviour (Lee and
Mear, 1991) and for a power-law matrix material under steady-state creeping conditions (Lee and Mear,
1992a; Yee and Mear, 1996). A variational characterization of the nonlinear behaviour of porous media at
finite-strains has been derived by Ponte Castaneda and coworkers under the assumption of particulate
ellipsoidal inclusions distributed within the matrix with an ellipsoidal symmetry (Castaneda and Zaidman,
1994; Kailasam et al., 1997a,b; Kailasam and Castaneda, 1998). Ellipsoidal microstructures have been also
analyzed by Gologanu et al. (1993, 1994): under axisymmetric loading conditions approximate homoge-
nized yield criteria and evolution laws for the microstructure, which is assumed to retain an ellipsoidal
shape throughout the whole deformation process, were proposed for a rigid ideally plastic matrix material.

In this paper, different anisotropic microstructure and loading conditions are considered. As far as the
RVE geometry is concerned, the analysis is carried out for a cylindrical volume with an elliptic cross-section
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containing a coaxial confocal elliptic-cylindrical cavity. This RVE geometry allows to take into account
effects due to variations of the RVE cross-section geometry under the constraint that the longitudinal RVE
axis is a principal direction of the overall stress and strain rate tensors. In order to assess the influence of the
void cross-section geometry on the homogenized behaviour of porous-ductile solids, axisymmetric
boundary conditions are relaxed. The considered boundary conditions allow the void to evolve not only in
volume but also in shape and orientation with respect to a fixed reference frame.

This study set the bases for the formulation of constitutive models for anisotropic porous, ductile media,
whose behaviour is described by means of an instantaneous effective yield condition, associated flow rules
for the plastic components of the macroscopic strain-rate tensor and evolution laws for the internal state
variables that are assumed to characterize the microstructural geometry.

To appraise the degree of accuracy of the proposed effective yield condition, a comparison is presented
with finite element simulations of the plastic collapse mechanisms within the ideally plastic matrix material
as obtained by applying the same loading conditions used to derive the analytical solution.

Results in this paper are reported as follows. In Section 2, Gurson’s approach to obtain the effective
mechanical properties of porous-ductile media is revised and discussed in the case of rigid ideally plastic
matrix behaviour. In Section 3, the orthotropic microstructure is analyzed and estimates for the effective
yield function as well as the evolution laws for the internal state variables that describe the microstructural
geometry are derived. Section 4 concerns finite element computations of unit cell strength properties at fixed
microstructure that are compared with the previously derived analytical results. Discussion and conclusions
on the present study are finally presented in Section 5.

2. Review of Gurson’s homogenization approach for porous media

The nonlinear effective behaviour of porous, ductile media can be obtained, as mentioned in the Section
1, by treating the porous material as a two-phase composite, the second phase (void) being characterized by
vanishing strength properties.

In this section, the approach to obtain the overall mechanical properties of porous, plastic media in-
troduced by Gurson (1977) on the basis of the variational analysis of multi-phase aggregates given by
Bishop and Hill (1951) is briefly described in order to set the stage for its subsequent application in Section
3 to orthotropic materials.

Let us consider an RVE of a two-phase heterogeneous material. It is assumed that the composite
possesses a finite microscale, with dimensions comparable to those of the inclusions, and a uniform mi-
crostructure only in a statistical sense, so that periodic boundary conditions (Taliercio, 1992; Suquet, 1996)
are not dealt with in the analysis of the single RVE. Thus, as is common practice in treating non-homo-
geneous materials (Castaneda, 1996), bounds are obtained on the nonlinear overall properties of the
composite.

Once the microstructure has been defined in terms of the void volume fraction and, eventually, higher
order information has been gained by overall symmetries in the distribution of the cavities within the solid,
the homogenized properties of the heterogeneous medium can be characterized in terms of average (or
macroscopic) quantities over the RVE, namely in terms of the macroscopic strain rate £, and stress X,
tensors, respectively defined as

. 1 1
Eij E; /VﬁljdV, Z’/ = V /’/Gl‘jdV, l,] = 172,3, (1)

where V' is the RVE volume and ¢; and o;; are the local strain rate and stress tensors, respectively.
The overall response of the RVE is sought for a given linear velocity field on the outer boundary 0V of
the RVE:
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Ul‘(x) = E,‘j.X'j on GV, (2)

x being the position vector in the RVE.
The nonlinear behaviour of the rigid perfectly plastic matrix material is assumed incompressible, with a
yield condition ¢(o;;) = 0 described by means of J, flow theory of plasticity:

/3 o
¢(Uij) = 0eq — 00 = ESijSij — 00, Sij = 0ij — %5177 (3)

where s;; is the deviatoric stress tensor, geq, the Mises effective stress, oy, the stress tensor trace, ¢,;, the
Kronecker delta, and oy, the uniaxial strength of the matrix material. An associated flow rule gives rise to

\gdo ¢ k,1=1,2,3 4)
Sij = —/——F¢ij, b = 1,4,9.
’ V €ki€ki ’
Now, let the macroscopic plastic dissipation be defined according to
. 1 / . 1 / . 1 / . 00 / .
= — wdlV =— O'i'ﬁi'dV:— O'l“Sl“dV:— Ee dV, 5
1% - 1% v At V o ] 1] V o q ( )

where the local plastic dissipation w is the doubly contracted product of the microscopic stress and strain

rate tensors, & is the Mises effective strain rate defined as é.q = 4 /%é,»jé,-j, &, being a divergence-free strain

rate field over the matrix volume Q. In the Eq. (5), the integration is taken over the volume Q of the rigid
ideally plastic matrix due to the null strength properties of the void.

By means of the Bishop and Hill no-correlation postulate (Bishop and Hill, 1951), which assumes that no
correlation exists between the components of the microscopic stress tensor ¢;; and the components of the
velocity field v; over any plane section of the RVE, the macroscopic plastic dissipation (5) can be expressed
as

1 .
W=y /fozt/éz:/dV = 2,Ey. (6)

It is worth emphasizing here that relation (6) does not follow immediately from definition (1) of the
macroscopic strain rate and stress tensors and from the applied boundary conditions (2) as given by Hill’s
macrohomogeneity equality. In fact, this equality requires that the relation v; = Eijxf (ie. & = E,,-) holds
locally within the whole RVE, E;; being independent of the position vector x; as it will be shown in the next
section, results are here obtained for ¢&; # Ei,» and the no-correlation postulate needs to be introduced. Since
the local associated J, yield condition fulfills convexity requirements at the microscale, a macroscopic
maximum work principle can be deduced from the microscopic one and from the no-correlation postulate
(Gurson, 1977). The effective yield function thus inherits the property of associativity of the local one for
the matrix material (Maier and Drucker, 1973). An upper bound on the macroscopic stress tensor at
yielding can be obtained, by exploiting the associativity of the macroscopic flow rule and Eq. (5), as

ij Q ij

In Section 3, the above procedure is applied to obtain estimates of the effective RVE strength properties
and evolution laws for the internal state variables that characterize the microstructural geometry. Within
the present approach, the evolution laws can be obtained by studying the effects of the instantaneous plastic
collapse mechanism, as governed by the boundary conditions (2), on the void shape, size and orientation.
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Microstructure evolution, which has been recently shown to have a strong influence on the nonlinear
behaviour of porous, ductile media at finite strains (Castaneda and Zaidman, 1994; Kailasam et al., 1997b),
is studied in details in order to get insights into the actual void growth mechanisms. This aspect is specially
important under quasi purely deviatoric states of stress for which the void volume fraction holds a nearly
constant value (see below), thus freezing the overall softening behaviour of the homogenized void-con-
taining material.

3. Effective mechanical properties of orthotropic porous, ductile media

Gurson’s model is not able to reproduce softening effects at the macroscopic level induced by pre-
dominantly deviatoric stress fields. In such cases, the dilatancy predicted by an associated flow rule is al-
most zero, thus preventing the void volume growth and the relevant increase in the induced softening. In
order to overcome problems related to the description of the microstructure in terms of the void volume
fraction only, additional conditions for void nucleation from small scale second-phase particles have been
introduced in the original Gurson’s model (Chu and Needleman, 1980).

In this section, an alternative approach is presented. It rests on a more refined description of the mi-
crostructure, which is based on the void volume fraction and on the aspect ratio of the void in its transverse
cross-section. In what follows, in order to simplify the analytical treatment, the microstructural geometry is
characterized by means of a cylindrical RVE with an elliptic cross-section, containing a coaxial and con-
focal elliptic-cylindrical cavity (Fig. 1a). The considered ellipses can have the major axis either along x, or
along x;. The anisotropy of the RVE cross-section is described by the parameter ¢, defined as
a%—b%_a%—b% (8)

4 4 7

where a; and b; (i = 1, 2) are the semiaxis lengths aligned with the reference axes x, and x;, respectively (Fig.
1). From Eq. (8) it follows that: ¢ > 0 when the ellipse is as in Fig. 1b with the major axis along x, and a
distance e, = V/4c¢ between the origin of the reference frame and the foci of the ellipse; ¢ = 0 when the
ellipse reduces to a circle (Fig. 1c); ¢ < 0 when the ellipse has its major axis along x; and a distance origin-
foci e; = v/ —4c (Fig. 1d).

By means of this model, an extension of the circular cylindrical Gurson’s model is achieved (Gurson,
1977). Aim of this model is to take into account the anisotropy at the microstructural level induced by the
shape and spatial arrangement of the voids as well as by plastic straining during external action increase.

This RVE geometry does not allow to fill the continuum without gaps or overlaps: the bounds on the
RVE strength have thus to be intended as approximate estimates of the actual behaviour of the homog-
enized continuum.

Under generalized plane strain conditions, namely with a constant longitudinal strain rate in the whole
RVE, the longitudinal shear strain rate components are assumed to be zero, both at the microscopic level
within the matrix and at the macroscopic level. This assumption allows to take into account only four
independent components of the macroscopic strain rate and stress tensors. Loading conditions on the RVE
are represented by the prescribed uniform strain rates (2) on the outer boundary 0V

The internal state variables that define the orthotropic microstructure are the void volume fraction f, the
void aspect ratio /1 and the orientation of the void axes in the transverse cross-section with respect to a fixed
global reference frame.

The porosity f'is defined as the ratio between the void volume ¥, and the whole RVE volume V-

c

Vo ab
= — = — 9
=7 by’ 9)
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Fig. 1. Geometry of the orthotropic RVE.

where subscript 1 refers to quantities computed on the void surface while subscript 2 refers to quantities at
the RVE external boundary.

The aspect ratio 4 is defined as the ratio between the lengths of the ellipse axes aligned with the reference
axes x, and x; at the cavity surface:

, I
A= by (10)
The orientation of the void axes is described by means of the angle between the local x, axis and the
global X, one.
Egs. (9) and (10) define the internal state variables f'and Z in terms of a;, b, a; and b,. Assigning the
RVE volume V, the porosity f, the aspect ratio A and the longitudinal length L of the RVE, the values of the
semiaxes lengths are
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a = %% (11a)

b = 1{7% (11b)

a = %% (11c)

by = %’CV% (11d)
where

21 21\
o= (L) e (220, 0

In what follows, the effective mechanical properties of orthotropic porous, plastic solids are presented in
terms of the instantaneous yield locus, which is a function of the matrix strength and of the current mi-
crostructure (here of the current porosity fand void aspect ratio 1), and in terms of the evolution laws for
the internal state variables.

Notice that, as discussed in Section 2, associativity of the matrix material is preserved at the macroscale
by the homogenized yield condition, so that the direction of macroscopic plastic straining coincides with the
outward normal to the effective yield domain.

3.1. Upper bounds on the effective yield condition

Effective yield conditions for orthotropic porous media have to depend on the microstructure, namely on
the void volume fraction and on the void aspect ratio, both in the presence and in the absence of a mac-
roscopic shear straining in the RVE transverse cross-section.

An ad-hoc transformation of coordinates is needed in order to describe the RVE cross-section geometry
in a simple way. A new coordinate mapping is introduced and used throughout; this mapping proves to be
more suitable than the standard elliptic one (Lee and Mear, 1992b,c) for numerical calculations.

The upper bounds on the overall yield condition are then obtained with increasing degree of approxi-
mation.

3.1.1. Elliptic-cylindrical coordinates
Let the elliptic-cylindrical mapping be defined on the x;—x; plane according to

x1 = (r—h(r))sinf,
{xz = (r—l—h(r))ic?sﬁ, (13)

where, in order to simplify the computations, function / has been assumed to depend on the radial-like
coordinate r only.

The orthonormal curvilinear coordinates (r, §) have to satisfy the orthogonality condition (Malvern,
1969)

Ox; Ox; Ox, O . da dh
%a—ﬁl+$aiﬁz:smﬁcosﬁ{(l —a>(r—h)— (l—i—a)(r—i—h)} =0. (14)

It turns out that the function 4 = A(r) has to vary according to
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dh
htrg=0 — h(r):g. (15)
By imposing that this transformation must be able to reproduce an ellipse with semiaxis lengths a (along

x1) and b (along x,) at fixed » = 7, namely that

i 19

the solution of Eq. (16) is

a® — b? _a+b
c=—7F F=—
7 being the average between the semi-axes lengths of the ellipse and ¢ the characteristic feature of the ellipse
aspect ratio defined by Eq. (8).

This elliptic-cylindrical mapping, which is similar to the three-dimensional axisymmetric one introduced
in Klocker and Montheillet (1996) to study spheroidal inclusions, is able to describe ellipses characterized
by any aspect ratio A. Hence, separate analyses are not necessary for cylindrical voids with elliptic cross-
section of arbitrary aspect ratio 2 > 1 and 1 < 1.

(17)

3.1.2. Fully integrated solution of the macroscopic plastic dissipation

In this subsection the orthonormal curvilinear reference frame (13) is used throughout in order to derive
an upper bound on the macroscopic yield domain expressed in terms of components of the macroscopic
stress tensor, according to the theory of Section 2.

The transformation of coordinates in the RVE transverse cross-section is expressed as

x; =r(1—%)sinf,
= r(1—5)sing 0
x =r(l1+%)cosp,
while the absolute value of the Jacobian of this transformation (r, f) — (x1,x,) is given by
H 42— 2cr?cos2p

r

The computations are developed in what follows under the simplifying assumption that the whole RVE
plastically deforms when the macroscopic yield limit is reached. This assumption will be shown in Section 4
to be acceptable, through comparisons with finite element simulations, when the porosity f is not greater
than a critical threshold (fg =2 0.2) at which the load-carrying capacity of the RVE can be assumed to
rapidly decay due to the development of localized collapse mechanisms (Koplik and Needleman, 1988).

The components of the continuous velocity field at plastic collapse aligned with the orthonormal ref-
erence frame xi, x,, x3 are assumed as follows:

01 =X (r)x1 + Enxy,
v2 = Epxy + Xo(r)xz, (20)
v3 = E33xs,

where the functions X;(r) and X(r) have to be determined. Symmetry of the macroscopic strain rate tensor
has been assumed in Eq. (20); the introduction of the uniform shear strain rate field £, in the above ve-
locity field allows to take into account the evolution of the orientation of the void axes in the RVE
transverse cross-section.

The shear velocity field in Eq. (20) is at variance with respect to that used by Fleck and Hutchinson
(1986). In fact, the terms related to £}, have been deduced here by assuming the velocity field to be curl free,



S. Mariani, A. Corigliano | International Journal of Solids and Structures 38 (2001) 2427-2451 2435

in order to not introduce a spin at the material level. Further discussions about the effects on the ho-
mogenized material properties of the assumed strain rate field can be found in (Corigliano and Mariani,
1998; Mariani, 1998a). Due to the incompressibility of the matrix material, the velocity field (20) must be
divergence-free; moreover, it has to satisfy the boundary conditions (2) on 0V. Relations (20) thus specialize
into

v =3 [%(Ea + Es3) + By — ﬂ1.733}961 + Eppxs,

ar+by
Uy = Elle + % {’azzﬁ, (Ea + Ez},) — Eb — azzizbz E33}X2, (21)
U3 = E33X37
where
_ bZEll - azEzz

Ea = Ell +E22, Eb = 2 (22)

a + by
In the case 4 = 1, i.e., in the case of a circular cylindrical RVE, the component E, is responsible on void
size changes at fixed circular void shape whilst the component E,, is responsible on void shape changes at
fixed void size. As mentioned in Section 2, the velocity field (21) in the RVE does depend on the position
vector x in such a way that the microscopic strain rate tensor &; differs from the corresponding macroscopic
one Ej;.
The velocity field (21) leads, within the framework of J,-plasticity theory, to the following (square of the)
effective microscopic strain rate field:

2 .2 .2 .2 .2 %)
w3 3 {Ul,l T, F 033+, “2,1}
1

=3 {Eg +4(0C — 0+ 1)EL +2(1 = 20)EyEsy + 4E7, +

. 2. . . .

€oy = *{6%1 + 552 + 6%3 + 26%2} =
b, . .

% (E, + E33) |:2(7’2 cos2f —c)

X (E}, + (1 — 2£)E33) + azbz(Ea -+ E33) — 4E12}"2 sin 2,8:| }

= % {@éq + @Zl cos2f + @fj sin 2[3} = %@eqv (23)
where
a
/= 24
a + b, Y

is a function of the anisotropy (i.e. of the void aspect ratio) in the RVE transverse cross-section and H has
been introduced in Eq. (19). In the Eq. (23), a comma means derivative with respect to a coordinate x;.
According to Eq. (5), the macroscopic plastic dissipation turns out to be expressed as

. L n 2n
W:@/éengz % /dx3/ —dr [ Hé(r, B)dp
V Q 0 r r 0

nLa2b2

o0 n ] /271: -
= — —dr H\/ O dp. 25
\/§Tfazb2/r1 r3 0 q ﬁ ( )

The integration in Eq. (25) is carried out over the volume Q of the matrix: Q = {(r, f,x;3): 1 <r<
1, 0< < 2n,0<x3 <L}

The upper bound on the effective yield domain, here expressed in terms of macroscopic stress compo-
nents conjugate to the macroscopic strain rates E,, Ej, Es; and E,, is obtained as
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Gl/4 n 1 ™ H
5, - I / @eqa dﬁ, (26a)
aEa \/_na2b2
%) 1 2n H
e [ P
GE,, fﬂazbz
7 r 2n
P W _ o / 13 ar [ @e‘*” dg, (26¢)
O0Ey;  \3mazby Jr, 0o 9 @eq
) 2n o
5,— LW il / L [7 1O 4 (26d)
26E12 2\/§1ta2b2 r 0 2 @eq

where @eqa, @eqh, @eq33 and @eqlz are the partial derivatives of @eq with respect to E,, E», Ey; and Ej,,
respectively

: 2asb o . . L
Ougo = “[f] 2 {azbz(Ea + Ey) + (R c0s 2B — ) (Ey + (1 — 20)Ess) — 2E 7 sin 23}, (27a)

. 2 . . . .

Ocgp = 7 {H[Eb + (1 = 20)Es3] + asby(E, + Ex3) (7 cos 2 — C)}a (27b)
. . 2 ’ . . . . 5
@eq33 = E {H[4(£ —/ + 1)E33 + (1 — 2€)Eb] + azbz[a2b2<Ea + E33) + (V COS Zﬁ — C')

X (Ey + (1 — 20)(E, + 2E3,)) — 2B, sin Zﬁ]}, (27¢)

. 4 . . .
@quZ = ﬁ {ZHEIZ — azbz(Ea + E33)}"2 sin Zﬁ} (27d)

The locus of potential yielding can be obtained by varying in the range | — oo, oo| the following di-
mensionless coefficients
E, E E
E, E, Ey
Notice that X, = 0 when y = 0 as it can be obtained from Egs. (26d) and (27d).
The components of the macroscopic stress tensor X;; at yielding aligned with the axes of the ellipses in
the RVE transverse cross-section are computed according to (Eq. (22))

oW oW dE, OW OF 2b

211 = — = — o +——b: Za + 2 Zb, (293)
6E11 6Ea aE“ aE}, 6E11 a, + by
oW OW OE, oW OF 2

5, W _OWOE,  OWOE . 24 5 (29b)

6E22 6Ea aEzz aEb 6E22 ¢ a, + bZ

where use has been made of the chain rule for differentiation.
Under plane strain conditions, that is for E3; = 0, the components of the macroscopic stress tensor at
yielding respect the condition (Mariani, 1998b):

le|19 ot Z22|z) 0

! (30)

3y =

Hence, under plane strain conditions, the relation o33 = (01, + 02 )/2, which holds locally for the matrix
material, is inherited by the overall yielding property of the RVE.
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Fig. 2. Effect of the void volume fraction f on the yield surface at fixed void aspect ratios (£33 = 0, £1, = 0): (a) A= 1, (b) 1 =3, (c)
A =10, and (d) /1 = 30.

The integration of Eq. (26) has been carried out numerically to obtain the results shown in the following.
Under plane strain conditions, Fig. 2 shows the effect of the void volume fraction f on the yield domain
at fixed values of void aspect ratio / and in the absence of the shear strain rate field (y =0, £, = 0). In
these plots, the yield domain is represented as projections onto the X; — X, plane (recall that X33 =
(211 + X»)/2 still holds). The values f = 0.05,0.2 and 1 = 1,3, 10, 30 have been chosen in order to cover a
broad range of porosities and void aspect ratios, that represent material behaviours from the dilutely
voided-transversely isotropic case to the mildly voided-orthotropic case. Cases with 4 < 1 (1/3,1/10, 1/30),
hence with ¢ < 0, can be obtained from the same Figs. 2b—d by simply interchanging the X;; and 25
components of the macroscopic yield limit. In Fig. 2a, the circular cylindrical Gurson’s yield domain has
also been drawn with long dashed lines.
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f=02.

In Fig. 3, the influence of the void aspect ratio 4 at fixed values of the void volume fraction f'is evidenced,
again in the absence of the shear strain rate field. Notice that in Fig. 3, the effective yield condition is given
only for positive values of the macroscopic stress component X», by exploiting the polar symmetry of the
overall yield locus with respect to the origin of the Xy, — X,, reference frame.

For increasing values of A, the plots in Figs. 2 and 3 show a stronger reduction of the RVE strength in
the x; direction, namely along the minor void axis, than in the x, direction. At fixed f, an increase of 4
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Fig. 4. Effect of the void aspect ratio ).z 1 on the yield surface at fixed void volume fraction f = 0.05 (E33 =0, Ep = 0).
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causes in fact a considerable reduction in the uniaxial strength along the x; direction, represented by the
intersection of the macroscopic yield limit with the X,, = 0 axis, while a slight increase in the uniaxial

strength along the x, direction is shown.

In Fig. 4, the macroscopic yield domain is represented at fixed f = 0.05 for values of the void aspect
ratio 4 > 1 as well as 1 < 1. The conclusions that void noncircularity acts by destroying the isotropy of the
effective yield domain in the X}, — X5, plane and by reducing the maximum stress at yielding for almost any
radial path in the X; — X5, plane can be drawn. Furthermore, Fig. 4 shows that the major reduction in the

components of the macroscopic stress tensor at yielding is connected to the direction aligned with the minor

axis of the elliptic RVE cross-section.
domain is represented in terms of the three projections onto the X, — X5, 22 — 21, and 2y} — 2 planes.

Fig. 5 concerns the more general situation with E %0 and 2}, # 0, still retaining Ey; = 0. The yield
It is worth stressing that also in this case X33 = (X} + 2»)/2. For each plane, the influence of the
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parameter y = E,/E, on the macroscopic yield domain is shown at fixed f = 0.05 and . = 3. A reduction
of the X, — X, projection is related to an increase of the other two X;; — X1, and X», — X, projections. In
these plots, the effective yield condition is given only for positive values of the macroscopic stress com-
ponent along the ordinate axis by exploiting again the polar symmetry of the overall yield loci with respect
to the origin of the X, 2,5, X, reference frame.

From the above figures, it can be noted that both the porosity f and the void aspect ratio 4 act as
macroscopic softening parameters. The introduction of the internal state variable 4 in the formulation of a
constitutive model for porous, ductile media could, at least partially, reduce the gap between experimental
and numerical results concerning localization and fracture phenomena (Tvergaard, 1990). This topic will be
treated in details in a companion paper, where a comparison will be presented between results achieved by
means of the circular cylindrical Gurson’s model with the introduction of the Tvergaard’s parameters ¢,
and ¢, (Tvergaard, 1981, 1982) and results achieved by means of the newly formulated orthotropic con-
stitutive model.

3.1.3. Approximate solution of the macroscopic plastic dissipation

In order to reduce the computational effort implied in the numerical computation of the effective yield
domain through Eq. (26), an approximate solution is here developed.

The approximate yield condition is derived in what follows under the simplifying assumption
1 =En/ E, = 0 (Eq. (28)) that is in the case of principal directions of the macroscopic strain rate and stress
tensors aligned with the axes of the local cartesian orthonormal reference frame xi, x, x3.

Following the same procedure which leads to the closed-form pressure dependent Gurson’s yield con-
dition for circular cylindrical RVE (Gurson, 1977), a Taylor series expansion of the microscopic plastic
dissipation in Eq. (25) in terms of cos(2f) is performed about cos(2f) = 0. This expansion, if arrested at the
first order, gives rise to:

W—L/Qldr/znhr O dp
\/gna2b2 r r3 0 “

rn 4 2
~ 200 /2 r +C @i drE W(0)7
V3aby Jr, r a

(31)

where 7 stands for the component of ¥ associated with the term of zeroth order in cos 2f in the Taylor
series expansion and @é has been introduced in Eq. (23). The term W! is zero being the integral of cos 28
over the domain [0, 27].

The components of the macroscopic stress tensor at yielding can thus be obtained as
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. 2a,b . . . .
@éqa = ]/'4 i 022 {azbz(Eu + E33) — C(Eb + (1 — 2€)E3g)}, (333.)
. 2 . . . .
Oly = = {(r4 + A (Ey + (1 — 20)Exs) — arby(E, + E33)c}, (33b)
Olyss = 3 {( + VA = L4 D+ (1= 20E,) + aabalasbs(E, + )

— (B + (1 = 20)(E, + 2E33))]}. (33¢)

Eq. (32) can be analytically expressed in terms of elliptic integrals of the first and second kinds. These
integrals play a special role in several fields of applied mathematics and fast algorithms are available for
their numerical computation (Press et al., 1992); topics related to the numerical integration of Eq. (32) is
not treated here for brevity.

Under plane strain conditions, a comparison between the yield locus obtained by means of the numerical
computation of integrals (26) for £3; = 0 and by means of the semi-analytical integration of the approx-
imate solution (32) is shown in Fig. 6 for A =3 and 4 = 30. The solution for 4 = 1 has been previously
depicted in Fig. 2a: the approximate solution here proposed, in fact, matches for 4 = 1, the analytical
original formulation given by Gurson for a transversely isotropic circular cylindrical RVE (Gurson, 1977).
Long-dashed curves in Fig. 2a represent the analytical approximate yield domain, which is an upper bound
on the exact solution for the homogenized yield condition as computed according to the theory revised in
Section 2.

Analogous conclusions can be stated for orthotropic solids (Fig. 6): approximation (32) constitutes an
upper bound on the solution (26) of the problem. The degree of accuracy of the current yield domain with
respect to the exact solution is thus reduced by the simplifications introduced in order to obtain an ana-
Iytical (or semi-analytical) description of the plastic behaviour of porous solids. Furthermore, from Figs. 2a
and 6, the effects of fand A on the approximations introduced by Eq. (32) can be appreciated. As a general
trend, the accuracy of the numerical solution is progressively reduced in an average way by increasing
values of f'and A. The plots show that the difference between the two solutions also depends on the path
followed in the plane X, — X5, of the macroscopic stress components: for stress states that predominantly
evolve along the X5, axis, no differences are shown between exact and approximate yield limits; on the other
hand, for stress states which are mainly characterized in terms of the X;; component, a more pronounced
scatter exists between the exact solution and the approximate one.

As far as three-dimensional (3D) loading conditions are concerned, at fixed value of porosity /= 0.05,
the effective yield locus is shown in Figs. 7 and 8 for 2 = 1 and 4 = 30, respectively. These 3D yield domains
are given in terms of projections onto the X, — X33, X — X33 and X1, — X5, macroscopic stress planes. The
domains are represented in these plots by means of meridians through their poles and by means of parallels
to the equator. Specifically, the poles of the yield domain are the points characterized by the maximum
distance from the origin of the X, X5, 233 reference frame, and the equator is the intersection between the
yield domain and a plane whose unit normal vector has the same direction of the line through the poles.

As for the yield domain obtained by the fully integrated solution of the macroscopic plastic dissipation,
the aspect ratio 1 acts by progressively reducing the dimensions of the effective yield surface. This note-
worthy reduction of the effective yield domain with respect to the transversely isotropic Gurson’s one
represented in Fig. 7 is accompanied by a rotation of the line through the poles of the domain. In particular,
this rotation highly affects the projections onto the Xy, — X33 and Xy, — Xy, planes, whilst the direction
cosines of the line through the poles in the Xy and X33 directions are not affected much. This aspect is a
manifestation of what is already shown by Figs. 2 and 3: the major reduction in the homogenized strength
properties of the elliptic-cylindrical RVE is displayed along the reference axis x; that is along the minor
principal axis of the elliptic void cross-section.
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3.2. Evolution laws for the void volume fraction and aspect ratio

The orthotropic model here developed is able to take into account the anisotropy in the RVE transverse
cross-section, at difference with respect to the original circular cylindrical Gurson’s model.

This anisotropy can be due to the shape of the inclusions at the beginning of the deformation process as
generated during metal forming processes like, e.g., rolling. In such a case, the orientation of the inclusions
is not randomly distributed; the isotropy or transverse isotropy is thus lost and privileged material direc-
tions must be taken into account. The anisotropy can also be induced by plastic straining for initially
transversely isotropic inclusion shapes and spatial distributions.
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By neglecting the effects of the induced anisotropy during the loading process, the material strength is
overestimated as it can be seen from the smaller dimensions of the effective yield domains (represented in
Figs. 7 and 8 in terms of the stress components X, X5, X33 at yielding) at higher values of A for a fixed
value of porosity f.

The development of upper bounds on the effective yield loci for orthotropic porous media thus requires a
more refined description of the microstructure evolution, due to the strong dependence of the results on the
void size and shape.

In this subsection, results concerning microstructure evolution are presented in the absence of a shear
strain rate field in the RVE cross-section related to Ej,. For principal directions of the macroscopic strain
rate and stress tensors aligned with the axes of the cartesian reference frame xi,x,,x;, namely with the
privileged directions of the RVE geometry, the microstructure is completely defined through the void
volume fraction f and the void aspect ratio 4; the void orientation with respect to a fixed global reference
frame is maintained fixed throughout the whole deformation process.
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Furthermore, it can be shown that the velocity field (21) allows the void to evolve maintaining an elliptic
cross-section.

By exploiting the matrix incompressibility, the evolution laws for the porosity f'and the void aspect ratio
A can be computed as

j= (Z) = (1= /)=~ Nkw, S
K a\’ Al—17. I 1 —xy
L= (b_1) Zj—{mEkk—lEb_iTKVEBa (35)

where parameter k, has been defined in Eq. (12) and Ey is the trace of the macroscopic strain rate tensor
(Ew can generally differ from zero due to the macroscopic dilatant behaviour).
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This orthotropic constitutive model for porous, ductile media thus represents a generalization of the
original Gurson’s model for transversely isotropic porous solids and is related to a more refined description
of the microstructure and of the microstructure evolution. In the preceding analysis, it has been assumed
that the RVE geometry is characterized by two confocal ellipses, which are the void-matrix interface and
the longitudinal RVE outer boundary. Nevertheless, the velocity field (21) causes the two ellipses to have
different foci at the end of the rate deformation process: this means that an approximation has been in-
troduced in the model in order to obtain the analytical results developed here.

4. Unit cell finite element simulations

In Section 3, approximate upper bounds on the effective yield loci for orthotropic porous, ductile media
have been obtained. In order to check their degree of accuracy and to quantify the overestimation of the
modelled overall strength, finite element (FE) simulations concerning the single RVE are here presented.

A spatial discretization of the RVE geometry is introduced by means of finite elements; loading con-
ditions are imposed on the external surface of the FE aggregate according to Eq. (2), while tractions-free
conditions are applied at the interface between the void and the matrix.

The results discussed hereafter concern only the RVE strength under monotonically increasing radial
paths in the space of the macroscopic strain-rate tensor components. The final plastic collapse of the RVE
(for assumed linearized kinematics) is identified by the formation of local mechanisms within the matrix
volume.

The degree of accuracy of the theoretical results is mainly connected to the capacity of the applied
loading conditions to develop a collapse mechanism that spreads over almost the whole matrix volume. In
fact, it has been assumed in the analytical derivation that the microscopic strain rate fields are continuous
functions within the rigid ideally plastic matrix.

The FE meshes used are different from those usually employed to check the transferability of Gurson’s
model at the material level. Here, the RVE geometry discretized by FEs is exactly the same as that used for
the analytical solution of the homogenization problem. In other works (Koplik and Needleman, 1988;
Needleman, 1972; Hom and McMeeking, 1989; Guennouni and Francois, 1987; Becker et al., 1989; Brocks,
1995; Tvergaard, 1997), the unit cell geometry represents a real volume element, which is able to reproduce
the whole continuum without gaps or overlaps. This difference is due to the fact that aim of this section is to
appraise the approximations introduced in the analytical treatment of the problem.

In order to simplify the geometry and the assessment of the dissipation mechanisms in the matrix
material during the analyses, the results are presented in what follows for the two-dimensional plane strain
case. The FE meshes are composed by plane strain, four-node B-bar elements, whose edges are disposed
along lines at » = constant and f§ = constant (Figs. 10 and 11). The matrix material obeys an (elastic)
ideally plastic J,-flow theory of plasticity. Results are presented in terms of components of the macroscopic
stress tensor X;; at yielding, which are computed according to their definition (1) as the volume averages of
the relevant local stress components ¢;;. By imposing external loading conditions at varying ¢ = E, /Eb and
1 = Ep»/E,, a set of points of the yield domain are obtained for the corresponding radial strain-rate paths.

Fig. 9 shows results concerning load cases with y = £,,/E, = 0 (no shear) and a comparison with the
analytical findings (numerical integration of Eq. 26). In this case, due to the symmetry, only one quarter of
the cross-section of the cylindrical RVE has been analyzed.

As can be seen from Fig. 9, the agreement between FE and theoretical results is good, specially for the
lower values of porosity fand aspect ratio A. The distance between the theoretical upper bound and the FE
results increases at increasing values of void aspect ratio 4. In the case of 4 = 10, the theoretical results
strongly overestimate the RVE strength in the x; direction. This fact can be justified by examining the
contour plots of the dimensionless effective stress within the matrix, drawn in Figs. 10 and 11, which
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correspond to limit situations marked with squared symbols in Figs. 9¢ and d, respectively. As can be
appreciated from the contour plots, the plastic collapse mechanism is partial; in the region(s) where
0eq/00 < 1 (colored with lighter grey levels in the figures), the yield limit is not reached and the material
does not deform plastically. This feature is in contrast with the hyphotesis of fully plastic situation within
the matrix volume at the basis of the theoretical analysis.

In Fig. 12, the results concerning the loading case with y = Ep /E,, =1 (shear) are shown. The whole
RVE cross-section has been discretized by FEs in this case. The same remarks done with reference to the
shear-free loading conditions hold. In addition, it can be observed from Fig. 12¢ that some points obtained
with FE computations seem to be slightly outside the theoretical upper bound on the yield domain. This is a
graphical effect caused by the projection of the results onto the X, — 25, plane. A comparison made on the
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norm of the stress tensor at yielding, as obtained from analytical results and FE simulations, shows that the
analytical results constitute a real upper bound on the effective yield locus, even in the presence of shear
strain rate loading conditions.

5. Discussion and closing remarks

The present paper mainly focused on the development of macroscopic yield conditions for anisotropic
porous, ductile media.
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The approach originally proposed by Gurson to obtain his constitutive model has been chosen in order
to derive upper bounds on the macroscopic yield conditions for cylindrical RVE with an elliptic cross-
section containing a coaxial and confocal elliptic-cylindrical cavity. Analytical developments as well as
approximate solutions have been presented with different degrees of approximation.

Besides the porosity, the void aspect ratio appears as a further internal state variable, which influences
the macroscopic yield domain. The evolution laws for the internal state variables have been explicitly
obtained.

The analytical results in terms of macroscopic yield domains have been finally compared with finite
element simulations.

To the authors’ knowledge, the paper contains a number of analytical results which contribute in the
understanding of the micromechanics of ductile fracture processes. These can be listed as follows:
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e The influence of void aspect ratio on the macroscopic yield domain has been explicitly put in evidence. It
appears clearly that void aspect ratio can act as a softening variable which strongly reduces the strength
of the RVE.

e While the evolution law for the void volume fraction f can be simply derived from the conservation of
mass principle, the evolution law for the void aspect ratio / shows a complicate dependence on the load-
ing conditions (through the components of the macroscopic strain rate tensor) and on the current micro-
structure (through the current values of f'and A).

e Analytical results have been obtained under the assumption of continuous strain rate fields within the
rigid ideally plastic matrix material. From a comparison with finite element simulations of plastic col-
lapse mechanisms under the same loading conditions, discontinuous strain rate fields seem to develop
in the matrix, thus leading to possible enhanced conditions for localization of plastic deformations in
preferred weak bands. This phenomena can give rise to a consistent reduction of the RVE strength prop-
erties with respect to the analytical results even during the void growth process, under strain levels and
for porosity values below the thresholds at which void coalescence mechanisms take place.

The above results represent the first part of a study aiming at the development and numerical imple-
mentation of a constitutive model for porous, ductile materials which takes into account the anisotropy
arising at the microscale. The macroscopic yield domain and the evolution laws of the internal state
variables presented in this paper can be directly used in the formulation of an elastoplastic constitutive
model at the macroscopic level. A particular aspect which arises from this theory is that the macroscopic
yield domain for porous media with orthotropic microstructure is expressed in a parametric way.

The following issues, which are particularly worth being addressed to the authors’ opinion, are now
being considered or will be considered in the next future:

e improvement of the upper bounds on the macroscopic yield condition through the introduction of dis-
continuous local plastic strain rate fields,
formulation of an analytical lower bound on the macroscopic yield condition,
generalization of the obtained results by allowing the principal axes of loading to be different from the
principal axes of the elliptic cross-section geometry. In this case, the evolution of the ellipse axes orien-
tation must be considered in the formulation.
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